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Abstract. We propose to evaluate the Mathien functions by their modulus and phage. The
modulus is independent of the characteristic exponent. In our approach, this exponent can
be evaluated by integration of a first-order differential equation. For the Hamiltonian of the
time-dependent harmonic oscillator, we do not need this exponent, only the modulus,

1. Introduction: the former method

The time-dependent harmonic oscillator can be described by Mathiew’s differential equation
[1-4]

i+ fex=0 with f) = fit — T) = 3% (@ — 2gcos Q). &)

The physical parameters €2, ¢ and g are given}: all three are real, 2 > Q and g > 0
(otherwise we move the time origin by %T = 7 /52). The parameter 2 may be negative;
however, then the solutions with ¢ = O are not stablei. The possible instability for ¢ > 0
will be discussed.

For ¢ > 0, we can write down the linear independent Floguet solutions in the form§

xa(t) = i C,exp (ii 2 2+ d sz:) @)

n=—ed

with real coefficients C,. Here v is the characteristic exponent. it is real but is not an
integer if the solutions are stablef. From Mathiev’s differential equation (1), we obtain the
recurrence relation

a— (2n + v)
Co-t + Cn+l = _"'('"q_"lcrz (3)

T We are looking here for the solutions of the initial-value problem and defer the discussion of the related
boundary-value problem with purely periodic solutions to section 3: that problem is solved by an infinite system
of characteristic values a,{g).

1 i.e. linear combinations of xz(#) = exp(ii% a%24).

§ Blanch [4] writes ¢z, instead of Cp.

|| For unstable solutions, v becomes complex with an integer real part.
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Setting Goy = Can/Carn-1) for # 2 0 and using nl_i’ﬂ'olo Gy, — 0 gives

_ q
a—2nxv)? —gGipseny

Gan )

The characteristic value v must be chosen such that (3) has a non-trivial solution} or,
equivalently, GoG-; = 1. (We may take v > 0 for stable solutions and Imv > 0 for
unstable solutions, otherwise we have to interchange x, and x_.)

From the set {G,}, we obtain all C,, except Cp which is determined by x+(0) = 1, i.e.
Zn Cp=1or

Co ' =1+G+G(1+..0+C(1+G (1 +..)). (5)

In this normal procedure, we first have to compute v to obtain the Floquet solutions.
As

x(t + 1) = exp(iva)x= (1) (6)

this quantity has a physical meaning apart from the factor m: for stable solutions it is
the phase shift} picked up during the period T. This quasiperiodicity is characteristic of
Floquet’s solutions x:. Another fundamenzal system x; and x; can be determined by the
initial vatues x{(0) = 1 = #3(0) and £;{0) = 0 = x2(0).

2. A new method
By introducing the modulus and phase of the Floquet solutions (see [5] or [6])
xz() = a(t) expi{Zip(?)} M

we obtain two differential equations with a constant wS§.

w2
p=— and 62+far=§. (8)

Apart from the factor exp(:I:%int), the solutions x: must be periodic. This leads to
a(t -+ T) = at) and @t + T) = @(t) + vr.

The constant w must be chosen properly-—otherwise we would not have the correct
periodicity of the modulus—and depends on the initial values. Choosing x4 = x; &+ iwxs,
we have a0} = 1, &(0) = 0 and ¢(0) = 0 besides ¢(0) = w. Since v > 0, we have w > 0
and w is then the Wronskian w = (X4x- — x4.X_)/(21}. Since &(0) = 0, we obtair a(z) as
an even function in ¢, simplifying our procedure,

1 After Hill (see e.g.[3] p 124), this gives the condition sin® v = Asin® {7./@ where A is the determinant of
an infinite tridiagonal matrix with 1 as its diagonal elements and ¢/{4n% — a} as the neighbours of these elements,
For high precision we have to use a high-dimensional matrix because of the slow convergence of A.

1 For unstable solutions, v characterizes the instability.

§ This follows from the integration of e + 2c¢p = 0. For unstable solutions, we set x= (£} = a(#) exp{Lp (1)} and
get & + fa = —w?/a® while the differential equation for ¢ remains unchanged. Thus, we can use all equations
for unstable solutions o as well by substituting w? by ~w?.
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Evidently, we first need a solution of the inhomogeneous and nonlinear differential
equation for o(¢). Afterwards, we can determine the phase ¢{r})—and the characteristic
exponent v = @{T)/mr—Ifrom a differential equation of first order.

Actually, we work with

y=a? as function of 7 = ¢ %)

instead of &, Indicating differentiation with respect to T by a prime, we obtain the nonlinear
inhomogeneous differential equation

¥ -3y 207 fyt =207 M’ (10)

with 2Q~2f = %(a — 2gcost). Since y is even and periodic like e, we have the even
Fourier expansionf

0
y=Zb,,cosnr (11}

n=0

and we insert this into the differential equation (10). Comparing the time-independent terms,

we find
wy: & a
(.5) =D (1 480) (
n=0

The terms connected with cosnt for n € {1, 2,...}) yield a bilinear system of equations

I
B — qbnb,m) . (12)

i [a — (n—&)?1(n — k) + [a ~ KMk

by by,
" tn—k

k=0

X la—(n+kPln+k)—[a—kk
+y .

&y bn+f:
k=0

B1by -+ bobns1 + bo*nt bp_i + bn—i—1 + bp—tr1
> +q Zb

00
+q Y bilbrtict + busrar)
=0

that can be solved by the recurrence relation

2n — 1 2n4+1 a —n?
b, baay =
211—6,,1 a—1 T+ o a4k

by (13)

This relation may be compared with (3) giving the usual coefficients C,: we do not need
the characteristic exponent v and have only positive indices #.

In order to keep rounding errors small, it is advisable to calculate, as a first step, the
ratio g, = b, /b,—, from the recurrence relation

n—1 q

. 14
21 =8 a—n®—(1+ 1/n)ggnn 4

&=

1 For an unstable solution, we have to substitute cos nt by coshnr.
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Table 1. Fourier coeificients b, for two examples with 2 = 0 {one in the stable region (g = %)
and one at the boundary (g = 0, 9)) and the example ¢ = 3, ¢ = % (in the stable region).

a=0 a=0 a=3

n g =10, 5000 g =0, 9080 g =0, 5000

0 2,0 x 10+® 1,3 x 10+0¢ 8,8 x10°"
1 —1,1x 107%™ _],6x10*% 1,9 x 10~0
2 1,0 x 1070 2,8%x 100 —7,5x10"®
3 —4,6 x 10703 —2,4 x 10+02 5,2 x 1078
4 1,3 x 107% 1,2x10¥00 1, 8x10~™
5 —2,3x107% 3,95 10°" 3,6 x 10-%
6 2,9 x 1008 8,9x107B -5 (%10
7 —2,7%x10-10 ~1,5 x 10-04 5,1x 1071
8 2,0 x 1012 2,0x10°% 3,9 10"12
9 —1,2x 10°14 —2,2x 10708 2,4 x 10-14
10 5,6 x 10717 1,9% 10710 —j,2x10°16

This is as in the usual numerical calculation. For high n we can ignore g,.; compared to
n? —a as well and thus, can find all g, up to n = 1. Subsequently, we can determine bg
from ¢ (0) = 1 or y(0) = 000 b, = 1 to get

by ' =14g(1+g0+...)) (15)

and then all &, from &, = gub,_).
Equation {12) can be converted by the recurrence relation into the fast converging series

20\ _ a(s —Eb )+q( S b bb+ ibb"“) (16)
o) =alw 2 "Oni1 — 50001 i ntnt D
(For unstable solutions we get a factor —1 as mentioned in footnote § on page 5566.)

From (8), we get the phase

dr

w ¥
w0=5), e a

As a consequence of the even Fourier series, we have y(1) = y(27x — 1) and thus, can
restrict ourselves to 0 < £2¢ < &, obtaining the characteristic exponent from

2 11
v="p (ET) . (18)
The integrals can be calculated numerically by Simpson’s methed. (Using intervals of equal
length has advantages when computing Fourier series: we should compute the often used

cosines at 2w /(2N) once and store them. This is more profitable than the Gauss-Legendre
method.)

3. Discussion

The Fourier series ), b, cosnt converges very fast because the coefficients b, get smaller,
nearly as g"/(n!)?, with increasing  as a result of the recurrence relation. The convergence
is also shown in table 1. Besides avoiding the parameter v, we also have only positive .
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Figure 1, Wronskian w divided by driving frequency
2 as a function of g; shown for & = —§ (long broken
curve), a = 0 (full curve), a = i (broken curve) and

Figure 2. Stability chart for the Mathieu functions with
0£g<8and —5< a2 < 15 as derived from (12).
The curves display the boundaries, which apparentty
increasingly restrict the stable regions with growing 4.

a = L (chain curve). Vertical lines and builets mark
the boundary of stability.

The Wronskian w is determined by the fundamental sclutions x,. and can be calculated
from (16) as a function of parameters a and g (without using the characteristic exponent).
Figure 1 displays w(g)/$: for some parameters a.

At the boundary of stability, the Wronskian diverges (or vanishes). Even this boundary
can be determined without the use of v: we only need to find the change of sign in (16) as
a function of ¢ and g. The result is plotted in figure 2 for 0 < g £ 8and -5 < a £ 15,

Applications [1, 2] often need periodic Mathieu functions with integer values of v. This
boundary problem can be solved only for special characteristic values a, with integer v. At
these values of a, the solutions change from stable to unstable and can thus be found from

the stability chart (figure 2).

In figure 3, we show o and ¢ as functions of ¢/T in the interval of periodicity {0, 1]
for ¢ = 0 and several values of g. In figure 4, we display the respective functions o cos g
for the larger interval 0 < ¢/T < 8 since the periodicity cannot be seen as well.

The decomposition in modulus and phase is useful for physical applications too:
according to Brown [5], the Hamiltonian of the time-dependent oscillator

2
H=2 (19)

m 2
o -+ -z'f(t)x

can be transformed with the generating function G(2, p, z") = —a(px’ — %mo’txa), i.e. by
x=—-98G/3p =ax" and p' = —3G/3x" = a(p — max") into the form

r_i EE E .72
H = (2m+2wx .

(20)
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Figure 3. Modulus o and phase ¢ of the Mathieu functions with ¢ = 0 as functions of 1/7T;
shown for g = 4 (broken curve), g = § (full curve) and g = 3 (chain curve).
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Figure 4. The real part of the Mathieu functions x. with the same parameters as in figure 3.

Thus, we need only the modulus of the Mathieu functions and the Wronskian w and can
ignore the characteristic exponent v. Thus, our method is most effective in this case.
In [7], we propose to write

I .
H = ;‘23 = Ip @n

with the invariantt

t The connection between (¢} and an invariant divided by a known time-dependent function is afready known
[8-10],
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2
_F m 1.
Iw—-—2m+2wx . (22)

That is, £ does not depend on time like the Hamiltonian of the time-independent harmonic
oscillator of mass m and frequency w. In quantum mechanics, the eigenvalues of I are
(n+

For all observables B, the Hamiltonian H' determines their time dependence by

dB ho 3B 38\ dp

Thus, it seems to be favourable to take @(f), instead of ¢, as the independent variable giving

dB 3B
== =1[B, 1]+ ==. 24
v [B,I]+ e (24)

For example, we get x' = /2I/mwsing and p’ = +/2Imwcosg.

In conclusion, the modulus of the Mathien functions and their Wronskian can be
calculated directly without the characteristic exponent with a very effective numerical
algorithm. For the Hamiltonian of the time-dependent oscillator and the stability, only
the modulus and Wronskian are relevant. With these quantities, we can determine the phase
and the characteristic exponent by a differential equation of first order. In this way, Mathieu
functions can be calculated more accurately than with the usual methods.
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