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Hamburg, Germany 

Received 11 March 1994 

Abstract We propose to evaluate Ihe Mathieu functions by their modulus and phase. The 
modulus is independent of the charaneristic exponent. In our approach, this exponent can 
be evaluated by integrarion of a &-order differential equation. For the Hamiltonian of the 
timedependent harmonic oscillator, we do nor need (his exponent. only the mwlulus. 

1. Introduction: the former method 

The timedependent harmonic oscillator can be described by Mathieu’s differential equation 
D-41 

x + f ( t ) x  = 0 with f ( t )  = f ( t  - T) = ($)‘(a -%cos Q t ) .  (1) 

The physical parameters Q, U and q are givent: all three are real, Q > 0 and q z 0 
(otherwise we move the time origin by f T  = n/Q). The parameter a may be negative; 
however, then the solutions with q = 0 are not stablet. The possible instability for q > 0 
will be discussed. 

For q > 0, we can write down the linear independent Floquet solutions in the forms 

with real coefficients C,. Here v is the characteristic exponent it is real but is not an 
integer if the solutions are stablell. From Mathieu’s differential equation (l), we obtain the 
recurrence relation 

a - (;?n + ly cn-1 + C”+l = C.. 
4 

(3) 

t We are looking here for the solutions of the initidvalue problem and defer the discussion of the related 
boundmy-value problem with purely periodic solutions to section 3 that problem is solved by an infinite system 
of characteristic values a,(q). 

5 Blanch [4] writes o, instead of C.. 
I1 For unstable solutions, Y becomes campiex with an integer real put. 

i.e. linear combinations of x * ( r )  = exp(&i;&Ot). 
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Setting G+,, = Cin/C*(n-l) for n > 0 and using lim G+, + 0 gives 

A Lindner and H Freese 

n+m 

The characteristic value U must be chosen such that (3) has a non-trivial solutiont or, 
equivalently, COG-, = 1. (We may take U > 0 for stable solutions and I m u  > 0 for 
unstable solutions, othenvise we have to interchange x+ and x - . )  

From the set [G,J, we obtain all C, except CO which is determined by x i ( 0 )  = 1, i.e. 
E, C. = 1 or 

c , - ' = 1 + G t ( l + G 2 ( 1 +  ... ) )+G-1 (1 tG -* ( 1 +  . . .  )). (5) 

In this normal procedure, we first have to compute U to obtain the Floquet solutions. 
As 

x*(t  + T )  = exp(&iua)xi(t) (6) 

this quantity has a physical meaning apart from the factor jr: for stable solutions it is 
the phase shift$ picked up during the period T. This quasiperiodicity is characteristic of 
Floquet's solutions x i .  Another fundamental system X I  and x2  can be determined by the 
initial values x ~ ( 0 )  = 1 = &(O) and Xl(0) = 0 = xz(0) .  

2. A new method 

By introducing the modulus and phase of the Floquet solutions (see [ 5 ]  or [6] )  

x&) = .(t)ex~(*i(o(t)l (7) 

we obtain two differential equations with a constant w!j 

. w  WZ 
( o = -  and C + f a = -  a2 f f3  ' 

Apart from the factor exp(&;iunt), the solutions x i  must be periodic. This leads to 
a(t + T )  = ~ ( t )  and (o(t + T )  = q(t)  + U X .  

The constant w must be chosen properly-otherwise we would not have the correct 
periodicity of the modulus-and depends on the initial values. Choosing X I  = xt i iwxz, 
we have a(0) = 1, rY(0) = 0 and q(0) = 0 besides @(O) = w. Since U > 0, we have w > 0 
and w is then the Wromkian w = ( i + x -  - x+i-)/(2i). Since k(0) = 0. we obtain a(t) as 
an even function in t ,  simplifying our procedure. 

t Aiter Hill (see e.g.[3] p I%), this gives the condition sin' in" = Asin' 4 x 6  where A is the determinant of 
an infinite tridiagonal matrix with I as its diagonal elements and q/(4n2 -a )  as the neighbours of these elements. 
For high precision we have lo use a high-dimensional matrix because of the slow convergence of A. 
t For unstable solutions, Y chmcterires the iNDbihty 
8 This follows from the integration of a$ t 2ayi = 0. For unstable solutions. we set x+( t )  = a(:) exp(i(p(r)) and 
gel 2 + fa = -w' /01~ while lhe differential equation for (p remains unchanged. Thus, we on use all eqU3tiOnS 
for unstable solutions a as well by substituting w2 by -w2 .  
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Evidently, we first need a solution of the inhomogeneous and nonlinear differential 
equation for E @ ) .  Afterwards, we can determine the phase &)-and  the characteristic 
exponent v = p(T)/n-from a differential equation offirst order. 

Actually, we work with 

y = ' y  as function of r = Rt (9) 

instead of a. hdicating differentiation with respect to r by a prime, we obtain the nonlinear 
inhomogeneous differential equation 

yy" - + 2Q-2 fy2 = 2Q-Zw2 (10) 

with 2SY2 f = ;(a - 24 cos 5) .  Since y is even and periodic like a, we have the even 
Fourier expansionf 

and we insert this into the differential equation (10). Comparing the time-independent terms, 
we find 

The terms connected with cosnr for n E (1,2, . . .)) yield a bilinear system of equations 

2 k=O 2n 
[a - (n - k ) 2 ] ( n  - k )  + [a - k z ] k  

bkba-h 

that can be solved by the recurrence relation 

This relation may be compared with (3) giving the usual coeacients C,,: we do not need 
the characteristic exponent U and have only positive indices n. 

In order to keep rounding errors small, it is advisable to calculate, as a first step, the 
ratio gn E b,/b,-l from the recurrence relation 

2n - 1 4 
2n - 6.1 a - n2 - (1 + i /n)qg ,+l '  

g. = - 

t For an unstable solution, we have to substitute M S ~ T  by coshnr. 

(14) 
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Table 1. Fourier coeficients b. for two examples with a = 0 (one in he stable Iegion (q = f) 
and one at the boundary (q z 0.9)) and the example (I = 3. q = 4 (in the stable region). 

a = O  a = O  a = 3  
n q = 0,5000 q = 0.9080 q = 0.5000 

0 2,O x 1,3 x 10'" 8,8 x 
1 - l . l ~ l O + ~  -1 .6x10tw I , ~ X L O - ~ '  
2 1 , O X I O ~ ~  
3 -4 .6x  1043 

5 -2.3 x 1 0 4  
6 2.9 x 10-08 
7 -2.7 x 10-10 
8 2.0 x 10-12 
g -1.2 x 10-14 
io 5 . 6 ~  10-17 

4 I ,  3 x 

2 , 8  x lotm -7.5 x 
-2.4 x lo+" 5 . 2  x 

1.2 x -1.8 x IO-" 
-3.9 x 10-O' 3.6 x 

8 , 9  x - 5 , O  x 
-1.5 x lo-" 5.1 x 10-'0 

2.0 x 10-06 -3,9 x 10-'Z 
-2,z 10-08 2 , 4  10-14 

1 . 9 ~ 1 0 - ~ ~  - 1 . 2 ~ 1 0 - ~ ~  

This is as in the usual numerical calculation. For high n we can ignore compared to 
nz - a as well and thus, can find all g, up to n = I .  Subsequently, we can determine bo 
from a(0) = 1 or y(0) = xzo b. = 1 to get 

bo- '=l+gi( l+gz( l+ ... )) (15) 

and then all b, from b, = g.b.-l. 
Equation (12) can be converted by the recurrence relation into the fast converging series 

(For unstable solutions we get a factor -1 as mentioned in footnote 5 on page 5566.) 
From (8), we get the phase 

As a consequence of the even Fourier series, we have y(s)  = y ( k  - 5 )  and thus, can 
restrict ourselves to 0 < Rt < n, obtaining the characteristic exponent from 

v=+). H 

The integrals can be calculated numerically by Simpson's method. (Using intervals of equal 
length has advantages when computing Fourier series: we should compute the often used 
cosines at 2 ~ / ( 2 N )  once and store them. This is more profitable than the Gauss-Legendre 
method.) 

3. Discussion 

The Fourier series En b,, cosnr converges very fast because the coefficients b,, get smaller, 
nearly as q"/(n!)2 ,  with increasing n as a result of the recurrence relation. The convergence 
is also shown in table 1. Besides avoiding the parameter U, we also have only positive n. 
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Figure 1. Wmns!=ian w divided by driving frequency 
Q as a function of 4; shown for a = - 4 (long broken 
curve). 4 = 0 (full curve). a = 4 (broken curve) and 
U = 4 (chain curve). Vertical lines and bulk$ mark 
the boundary of stability. 

15 r 

-5 t 
F i w  2 Stability chan for the Mathieu functions with 
0 4 4 4 8 and -5 4 n 4 15 as derived from (12). 
The curyes display the boundaries, which apparently 
increasingly restrict the stable regions with growing q ,  

The Wronskian w is determined by the fundamental solutions x* and can be calculated 
from (16) as a function of parameters a and q (without using the characteristic exponent). 
Figure 1 displays w ( q ) / Q  for some parameters a .  

At the boundary of stability, the Wronskian diverges (or vanishes). Even this boundary 
can be determined without the use of U: we only need to find the change of sign in (16) as 
a function of a and 4. The result is plotted in figure 2 for 0 < q < 8 and -5 < a < 15. 

Applications [1,2] often need periodic Mathieu functions with integer values of U. This 
boundaryproblem can be solved only for special characteristic values a, with integer U. At 
these values of a ,  the solutions change from stable to unstable and can thus be found from 
the stability chart (figure 2). 

In figure 3, we show (Y and rp as functions of t / T  in the interval of periodicity [O, 11 
for a = 0 and several values of q .  In figure 4, we display the respective functions (Y cos rp 
for the larger interval 0 < t / T  < 8 since the periodicity cannot be seen as well. 

The decomposition in modulus and phase is useful for physical applications too: 
according to Brown 1.51, the Hamiltonian of the time-dependent oscillator 

P' m H = - + -f(t)+2 
2m 2 

can be transformed with the generating function G ( t ,  p ,  x ' )  = -a(px' - $n&xR), i.e. by 
x = -aG/ap  =ax' and p' = -aG/ax' = ( ~ ( p  - mdrx') into the form 
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Figure 3. hlodulus LI and phase p of the Mathieu functions with D = 0 as functions of t/T: 
shown for q = (broken curve), q = $ (Full curve) and q = f (ehaio curve). 

Figure 4. 'The real pm of the Mathieu functions XI wilh the same paramerers as in figure 3. 

Thus, we need only the modulus of the Mathieu functions and the Wronskian w and can 
ignore the characteristic exponent v .  Thus, our method is most effective in this case. 

In [71, we propose to write 

with the invariantt 

t The connection between H ( t )  and an invwiant divided by a known time-dependent function is already knowo 
[8-101. 
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That is, I does not depend on time like the Hamiltonian of the time-independent harmonic 
oscillator of mass m and frequency W .  In quantum mechanics, the eigenvalues of I are 
(n + f)h. 

For a l l  observables E ,  the Hamiltonian H' determines their time dependence by 

Thus, it seems to be favourable to take q(t) ,  instead oft ,  as the independent variable giving 

For example, we get x' = -sin 01 and p' = -cos rp. 
In conclusion, the modulus of the Mathieu functions and their Wronskian can be 

calculated directly without the characteristic exponent with a very effective numerical 
algorithm. For the Hamiltonian of the time-dependent oscillator and the stability, only 
the modulus and Wronskian are relevant. With these quantities, we can determine the phase 
and the characteristic exponent by a differential equation of first order. In this way, Mathieu 
functions can be calculated more accurately than with the usual methods. 
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